Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomicrofluidics ; 18(2): 021501, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456173

RESUMO

Many serious infectious diseases have occurred throughout human history. Rapid and accurate detection as well as the isolation of infected individuals, through nucleic acid testing, are effective means of containing the spread of these viruses. However, traditional nucleic acid testing methods rely on complex machines and specialized personnel, making it difficult to achieve large-scale, high-throughput, and rapid detection. In recent years, digital microfluidics has emerged as a promising technology that integrates various fields, including electrokinetics, acoustics, optics, magnetism, and mechanics. By leveraging the advantages of these different technologies, digital microfluidic chips offer several benefits, such as high detection throughput, integration of multiple functions, low reagent consumption, and portability. This rapid and efficient testing is crucial in the timely detection and isolation of infected individuals to prevent the virus spread. Another advantage is the low reagent consumption of digital microfluidic chips. Compared to traditional methods, these chips require smaller volumes of reagents, resulting in cost savings and reduced waste. Furthermore, digital microfluidic chips are portable and can be easily integrated into point-of-care testing devices. This enables testing to be conducted in remote or resource-limited areas, where access to complex laboratory equipment may be limited. Onsite testing reduces the time and cost associated with sample transportation. In conclusion, bioassay technologies based on digital microfluidic principles have the potential to significantly improve infectious disease detection and control. By enabling rapid, high-throughput, and portable testing, these technologies enhance our ability to contain the spread of infectious diseases and effectively manage public health outbreaks.

2.
Nanomicro Lett ; 16(1): 107, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305954

RESUMO

High-performance microwave absorption (MA) materials must be studied immediately since electromagnetic pollution has become a problem that cannot be disregarded. A straightforward composite material, comprising hollow MXene spheres loaded with C-Co frameworks, was prepared to develop multiwalled carbon nanotubes (MWCNTs). A high impedance and suitable morphology were guaranteed by the C-Co exoskeleton, the attenuation ability was provided by the MWCNTs endoskeleton, and the material performance was greatly enhanced by the layered core-shell structure. When the thickness was only 2.04 mm, the effective absorption bandwidth was 5.67 GHz, and the minimum reflection loss (RLmin) was - 70.70 dB. At a thickness of 1.861 mm, the sample calcined at 700 °C had a RLmin of - 63.25 dB. All samples performed well with a reduced filler ratio of 15 wt%. This paper provides a method for making lightweight core-shell composite MA materials with magnetoelectric synergy.

3.
ACS Nano ; 18(8): 6266-6275, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38252138

RESUMO

In biomedical testing, artificial intelligence (AI)-enhanced analysis has gradually been applied to the diagnosis of certain diseases. This research employs AI algorithms to refine the precision of integrative detection, encompassing both visual results and fluorescence spectra from lateral flow assays (LFAs), which signal the presence of cancer-linked miRNAs. Specifically, the color shift of gold nanoparticles (GNPs) is paired with the red fluorescence from nitrogen vacancy color centers (NV-centers) in fluorescent nanodiamonds (FNDs) and is integrated into LFA strips. While GNPs amplify the fluorescence of FNDs, in turn, FNDs enhance the color intensity of GNPs. This reciprocal intensification of fluorescence and color can be synergistically augmented with AI algorithms, thereby improving the detection sensitivity for early diagnosis. Supported by the detection platform based on this strategy, the fastest detection results with a limit of detection (LOD) at the fM level and the R2 value of ∼0.9916 for miRNA can be obtained within 5 min. Meanwhile, by labeling the capture probes for miRNA-21 and miRNA-96 (both of which are early indicators of breast cancer) on separate T-lines, simultaneous detection of them can be achieved. The miRNA detection methods employed in this study may potentially be applied in the future for the early detection of breast cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Nanopartículas Metálicas , MicroRNAs , Nanodiamantes , Humanos , Feminino , MicroRNAs/genética , Ouro , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Inteligência Artificial , Técnicas Biossensoriais/métodos , Corantes
4.
Micromachines (Basel) ; 14(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138412

RESUMO

Advanced manufacturing technology and systems (AMTS) combine the principles of mechanical engineering with innovative design to create products and processes that are better, faster, and more precise [...].

5.
Nanotechnology ; 35(7)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972400

RESUMO

Ti3C2TxMXene has attracted widespread attention in lubrication owing to its unique structure and surface properties. However, the inferior nanotribological properties of Ti3C2Txstill limit its applications in nano lubricants. Herein, we propose a controllable interface-tailored strategy to reduce the nanotribological properties of Ti3C2Txby depositing MoS2nano-sheet on its surface using atomic layer deposition (ALD). The nanotribological properties of the MoS2/Ti3C2Txnanocomposites synthesized by ALD are studied by atomic force microscope for the first time. At the optimal 20 ALD MoS2cycles, the nanofriction of MoS2/Ti3C2Txhas been reduced by 57%, 46%, and 44% (at 5, 10, and 15 nN load, respectively), while the adhesion has been reduced by 59%, compared to the original Ti3C2Tx. The results can contribute to understanding of the nanotribological mechanisms of Ti3C2Txcomposites and provide the potential prospects for Ti3C2Txas a nanoscale adjustable lubricant.

6.
Micromachines (Basel) ; 14(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38004835

RESUMO

A nanosecond laser is used to fabricate groove-patterned textures on the upper surface of Ti-6Al-4V alloys, and then molybdic sulfide solid lubricants are filled into the grooves. The treated titanium alloy is subjected to friction and wear tests. The tribological performances of Ti-6Al-4V alloys are evaluated, and the wearing mechanism is analyzed. The combination of solid lubricants and surface texturing can effectively reduce the frictional coefficient and reduce the adhesion of Ti-6Al-4V materials on the steel balls for friction. The main wearing mechanism is the adhesive wear of the Ti-6Al-4V alloy and the adhesion of Ti-6Al-4V alloy materials on the surface of the steel balls. During the friction process, solid lubricants are squeezed from the grooves and coated at the friction interface to form a solid lubrication layer. This is the important reason why the combination of surface texturing and solid lubricants can improve the friction properties of titanium alloys effectively. The combination of solid lubricants and laser surface texturing provides an effective alternative way to improve the tribological properties of titanium alloy materials.

7.
Micromachines (Basel) ; 14(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004853

RESUMO

Utilizing interface engineering to construct abundant heterogeneous interfaces is an important means to improve the absorbing performance of microwave absorbers. Here, we have prepared the MXene/MoS2-ReS2 (MMR) composite with rich heterogeneous interfaces composed of two-dimensional Ti3C2Tx MXene and two-dimensional transition metal disulfides through a facile hydrothermal process. The surface of MXene is completely covered by nanosheets of MoS2 and ReS2, forming a hybrid structure. MRR exhibits excellent absorption performance, with its strongest reflection loss reaching -51.15 dB at 2.0 mm when the filling ratio is only 10 wt%. Meanwhile, the effective absorption bandwidth covers the range of 5.5-18 GHz. Compared to MXene/MoS2 composites, MRR with a MoS2-ReS2 heterogeneous interface exhibits stronger polarization loss ability and superior absorption efficiency at the same thickness. This study provides a reference for the design of transition metal disulfides-based absorbing materials.

8.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37763925

RESUMO

Graphene aerogels (GAs) possess a remarkable capability to absorb electromagnetic waves (EMWs) due to their favorable dielectric characteristics and unique porous structure. Nevertheless, the introduction of nitrogen atoms into graphene aerogels can result in improved impedance matching. In recent years, nitrogen-doped graphene aerogels (NGAs) have emerged as promising materials, particularly when combined with magnetic metals, magnetic oxides, carbon nanotubes, and polymers, forming innovative composite systems with excellent multi-functional and broadband absorption properties. This paper provides a comprehensive summary of the synthesis methods and the EMW absorption mechanism of NGAs, along with an overview of the absorption properties of nitrogen-doped graphene-based aerogels. Furthermore, this study sheds light on the potential challenges that NGAs may encounter. By highlighting the substantial contribution of NGAs in the field of EMW absorption, this study aims to facilitate the innovative development of NGAs toward achieving broadband absorption, lightweight characteristics, and multifunctionality.

9.
Small ; 19(50): e2304246, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635123

RESUMO

With the rapid development of autonomous and intelligent devices driven by soft actuators, ion soft actuators in flexible intelligent devices have several advantages over other actuators, including their light weight, low voltage drive, large strain, good flexibility, fast response, etc. Traditional ionic polymer metal composites have received a lot of attention over the past decades, but they suffer from poor driving performance and short service lives since the precious metal electrodes are not only expensive, heavy, and labor-intensive, but also prone to cracking with repeated actuation. As excellent candidates for the electrode materials of ionic soft actuators, carbon-based nanomaterials have received a lot of interest because of their plentiful reserves, low cost, and excellent mechanical, electrical, and electrochemical properties. This research reviewed carbon-based nanomaterial electrodes of ion soft actuators for flexible smart devices from a fresh perspective from 1D to 3D combinations. The design of the electrode structure is introduced after the driving mechanism of ionic soft actuators. The details of ionic soft actuator electrodes made of carbon-based nanomaterials are then provided. Additionally, a summary of applications for flexible intelligent devices is provided. Finally, suggestions for challenges and prospects are made to offer direction and inspiration for further development.

10.
Soft Robot ; 10(5): 861-872, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37335927

RESUMO

Predictable bending deformation, high cycle stability, and multimode complex motion have always been the goals pursued in the field of flexible robots. In this study, inspired by the delicate structure and humidity response characteristics of Selaginella lepidophylla, a new multilevel assisted assembly strategy was developed to construct MXene-CoFe2O4 (MXCFO) flexible actuators with different concentration gradients, to achieve predictable bending deformation and multi-stimulus cooperative control of the actuators, revealing the intrinsic link between the gradient change and the bending deformation ability of the actuator. The thickness of the actuator shows uniformity compared with the common layer-by-layer assembly strategy. And, the bionic gradient structured actuator shows high cycle stability, and it maintains excellent interlayer bonding after bending 100 times. The flexible robots designed based on the predictable bending deformation and the multi-stimulus cooperative response characteristics of the actuator initially realize conceptual models of humidity monitoring, climbing, grasping, cargo transportation, and drug delivery. The designed bionic gradient structure and unbound multi-stimulus cooperative control strategy may show great potential in the design and development of robots in the future.

11.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984902

RESUMO

Advanced manufacturing technology and systems (AMTSs) combine the principles of mechanical engineering with design innovation to create products and processes that are better, faster and more precise [...].

12.
Micromachines (Basel) ; 14(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36985067

RESUMO

As a major public health issue, early cancer detection is of great significance. A field-effect transistor (FET) based on an MoS2/C60 composite nanolayer as the channel material enhances device performance by adding a light source, allowing the ultrasensitive detection of cancer-related miRNA. In this work, atomic layer deposition (ALD) was used to deposit MoS2 layer by layer, and C60 was deposited by an evaporation coater to obtain a composite nanolayer with good surface morphology as the channel material of the FET. Based on the good absorption of C60 by blue-violet light, a 405 nm laser was selected to irradiate the channel material, improving the function of FET biosensors. A linear detection window from 10 pM to 1 fM with an ultralow detection limit of 5.16 aM for miRNA-155 was achieved.

13.
ACS Appl Mater Interfaces ; 15(4): 5787-5797, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669167

RESUMO

Structure and material composition is crucial in realizing high electromagnetic interference (EMI) shielding effectiveness (SE). Herein, an ultrathin MXene@AgNW@MoS2 (MAM) composite film that resembles the structure of a pork belly and exhibits superior EMI shielding performance was fabricated via the vacuum-assisted suction filtration process and atomic layer deposition (ALD). The staggered AgNWs form skeletons and intersperse in MXene sheets to build a doped layer with three-dimensional network structures, which improves the electrical conductivity of the film. Based on the optimal dispersion concentration of Ag in doped and single layers, the MXene/AgNW doped layer and AgNW single layer are alternately vacuum-assisted-filtered to obtain laminated structures with multiple heterogeneous interfaces. These interfaces generate interface polarization and increase multiple reflection and scattering, resulting in the increased electromagnetic (EM) wave losses. On the other hand, MoS2 outer nanolayers fabricated precisely by ALD effectively increases the absorption proportion of electromagnetic waves, reduces the secondary reflection, and improves the stability of EMI shielding properties. Ultimately, an ultrathin MAM film (a thickness of 0.03 mm) with five alternating internal layers and MoS2 outer layers exhibits an excellent EMI SE of 86.3 dB in the X-band.

14.
Small ; 19(14): e2207051, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36642797

RESUMO

Developing various nanocomposite microwave absorbers is a crucial means to address the issue of electromagnetic pollution, but remains a challenge in satisfying broadband absorption at low thickness with dielectric loss materials. Herein, an ultra-broadband microwave metamaterial absorber (MMA) based on hollow carbon/MXene/Mo2 C (HCMM) is fabricated by a multi-scale design strategy. The microscopic 1D hierarchical microtube structure of HCMM contributes to break through the limit of thickness, exhibiting a strong reflection loss of -66.30 dB (99.99997 wave absorption) at the thinnest matching thickness of 1.0 mm. Meanwhile, the strongest reflection loss of -87.28 dB is reached at 1.4 mm, superior to most MXene-based and Mo2 C-based microwave absorbers. Then, the macroscopic 3D structural metasurface based on the HCMM is simulated, optimized, and finally manufactured. The as-prepared flexible HCMM-based MMA realizes an ultra-broadband effective absorption in the range of 3.7-40.0 GHz at a thickness of 5.0 mm, revealing its potential for practical application in the electromagnetic compatibility field.

15.
ACS Appl Mater Interfaces ; 14(16): 18150-18158, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35416640

RESUMO

The main challenge in manufacturing an ionic actuator of large bending displacement and great response sensitivity is to design a flexible electrode with great electrochemical characteristics and conductivity. This research reports the MXene-PEDOT:PSS/AgNWs (MPA) electrode with a three-dimensional (3D) network structure formed by a hybrid method of the one-dimensional (1D) silver nanowires (AgNWs) and the two-dimensional (2D) Ti3C2Tx MXene. Here, a soft actuator based on the ionic cross-linked hybrid electrode was designed. The results show that the MPA electrode-based soft actuator achieves a large bending strain (0.48%, ±0.5 V sine voltage), wide frequency (0.1-10 Hz), 5 h durability (91.9% retention), fast response time (≈5 s), great power density (7.53 kW m-3), and great energy density (18.83 kJ m-3). These excellent performances contribute to the 3D structure of electrodes formed by MXene and AgNWs creating an unhindered ion channel, which facilitates short diffusion and rapid injection of ions and provides higher capacitance and mechanical integrity. This 3D network layered structure hybrid electrode provides an opportunity for the development of ultralow-voltage-drivable artificial muscles.

16.
ACS Appl Mater Interfaces ; 14(8): 10081-10091, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175026

RESUMO

As a member of the two-dimensional transition metal dichalcogenide family, rhenium disulfide (ReS2) is a highly competitive favorite in the field of photoelectric sensors. Nevertheless, the rapid recombination of electron-hole pairs and poor electronic transmission capacity of pure ReS2 limit its wider applications. As a new attempt to optimize its inherent structure and challenge its competency boundary, in this work, a bimetallic co-chamber feeding atomic layer deposition with a precise dose regulation strategy has been used to fabricate ReS2 nanotubes (ReS2-NTs) and MoS2-ReS2 heterojunction nanotubes (MoS2-ReS2-HNTs) based on the anodic aluminum oxide template sacrifice method for the first time. These obtained NTs have at least two advantages: they have a controllable diameter (40-500 nm), definite wall thickness (1 layer to 10 layers), and desirable Mo-to-Re ratio (0 to 90%), and their electron-transfer capacity and photocurrent response can be effectively enhanced by the incorporated Mo atoms. Further experiments indicated that MoS2-ReS2-HNTs with a real Mo-to-Re ratio of 31.0% exhibits the best photocurrent response performance, by which the ultrasensitive detection of cancer-related miRNA-155 with a linear range of 10 aM to 1 nM and a detection limit of 1.8 aM is achieved.

17.
Adv Sci (Weinh) ; 9(7): e2101988, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35068057

RESUMO

In the design of electromagnetic (EM) wave absorbing materials, it is still a great challenge to optimize the relationship between the attenuation capability and impedance matching synergistically. Herein, a 3D porous MoS2 /MXene hybrid aerogel architecture with conformal heterogeneous interface has been built by atomic layer deposition (ALD) based on specific porous templates to optimize the microwave absorption (MA) performance comprehensively. The original porous structure of pristine Ti3 C2 Tx aerogel used as templates can be preserved well during ALD fabrication, which prolongs the reflection and scattering path and ameliorates the dielectric loss. Meanwhile, plenty of heterointerfaces between MoS2 and Ti3 C2 Tx have been fabricated based on conformally ALD-deposited MoS2 with controlled thickness on the porous surfaces of the templates, which can effectively optimize the impedance matching and transform its response to EM waves from shielding into absorbing. Moreover, the interaction between the attenuation capability and impedance matching can also be modulated by the number of ALD cycle in MoS2 fabrication. After optimization, MoS2 /MXene hybrid aerogel obtained under 300 ALD cycles shows a minimum reflection loss of -61.65 dB at the thickness of 4.53 mm. In addition, its preferable lightweight, high surface area, mechanical, and hydrophobicity properties will also be conducive to further practical applications.

18.
Micromachines (Basel) ; 12(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34442567

RESUMO

Micro-textured tools were fabricated by making textures on rake faces and filling them with molybdenum disulfide. Dry milling of Ti-6Al-4V alloys was carried out with the micro-textured tools and conventional tools for comparison. Results showed that micro-textured tools can reduce the resultant cutting forces, cutting temperatures, and power consumption by approximately 15%, 10%, and 5%, respectively. Meanwhile, the developed tools can improve tool lives by approximately 20-25%. The radial width of cut, the cutting speed, and the axial depth of cut all had statistical and physical effects on the energy consumption per unit of volume in dry milling of Ti-6Al-4V alloys, while the feed per tooth seemed to have no significant effect. The mechanism for improved performance of micro-textured tools can be mainly interpreted as their self-lubricating function.

19.
Opt Express ; 26(15): 18998-19008, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30114160

RESUMO

Ordered hierarchical structures were fabricated on a stainless steel surface using a single picosecond laser for highly controllable dimensions. Picosecond laser induced periodic structures were firstly used to create large-scale nano-structures with a period of ~450 nm. Subsequently, laser direct writing, by simply changing process parameters was employed to create micro squared structures with 19 µm width, 19 µm interval and 3-7.5 µm depth on the previously created nano-structures. As a result, micro squared structures covered by uniform nano-structures, similar to examples present in nature, were successfully fabricated. Additionally, the wettability of the created hierarchical structures was analyzed. The results demonstrated that the combination of both micro- and nano-structures allowed to tune the wetting behavior, presenting a great potential for wettability applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...